Asymptotic Behavior of Stochastic Strongly Damped Wave Equation with Multiplicative Noise

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Asymptotic Behavior of Stochastic Strongly Damped Wave Equation with Multiplicative Noise

In this paper we study the asymptotic dynamics of the stochastic strongly damped wave equation with multiplicative noise under homogeneous Dirichlet boundary condition. We investigate the existence of a compact random attractor for the random dynamical system associated with the equation.

متن کامل

Asymptotic Behavior of Stochastic Strongly Wave Equation on Unbounded Domains

We study the asymptotic behavior of solutions to the stochastic strongly damped wave equation with additive noise defined on unbounded domains. We first prove the uniform estimates of solutions, and then establish the existence of a random attractor.

متن کامل

Attractors for Stochastic Strongly Damped Plate Equations with Additive Noise

We study the asymptotic behavior of stochastic plate equations with homogeneous Neumann boundary conditions. We show the existence of an attractor for the random dynamical system associated with the equation.

متن کامل

Well-posedness and asymptotic behavior for stochastic reaction-diffusion equations with multiplicative Poisson noise∗

We establish well-posedness in the mild sense for a class of stochastic semilinear evolution equations with a polynomially growing quasi-monotone nonlinearity and multiplicative Poisson noise. We also study existence and uniqueness of invariant measures for the associated semigroup in the Markovian case. A key role is played by a new maximal inequality for stochastic convolutions in Lp spaces .

متن کامل

Stochastic evolution equations with multiplicative Poisson noise and monotone nonlinearity

Semilinear stochastic evolution equations with multiplicative Poisson noise and monotone nonlinear drift in Hilbert spaces are considered‎. ‎The coefficients are assumed to have linear growth‎. ‎We do not impose coercivity conditions on coefficients‎. ‎A novel method of proof for establishing existence and uniqueness of the mild solution is proposed‎. ‎Examples on stochastic partial differentia...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: International Journal of Modern Nonlinear Theory and Application

سال: 2015

ISSN: 2167-9479,2167-9487

DOI: 10.4236/ijmnta.2015.43015